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Abstract
We provide the semantics of garbage collection (GC) for the Lua

programming language. Of interest are the inclusion of finaliz-
ers (akin to destructors in object-oriented languages) and weak
tables (a particular implementation of weak references). The model

expresses several aspects relevant to GC that are not covered in

Lua’s documentation but that, nevertheless, affect the observable

behavior of programs.

Our model is mechanized and can be tested with real programs.

Our long-term goal is to provide a formalized static analyzer of Lua

programs to detect potential dangers. As a first step, we provide a

prototype tool, LuaSafe, that typechecks programs to ensure their

behavior is not affected by GC. Our model of GC is validated in

practice by the experimentation with its mechanization, and in

theory by proving several soundness properties.

1 Introduction
Lua is an extensively used imperative scripting language. Its popu-

larity grows to the point that it currently has several interpreters

and compilers [5], and static analyzers [4]. Among its advocates,

Lua has a long standing support within the game industry [10].

However, while being a very fast scripting language, it is noted in

ibid that:

“Using Lua on performance-constrained platforms
can definitely be a challenge if you don’t understand

the ins and outs of Lua’s memory usage.”

In particular, Lua’s garbage collector (GC) offers a rich interface

to let the developer efficiently deal with memory. For instance,

it is possible to create a weak table, that is, a Lua table (akin to

a JavaScript’s’ associative array) whose keys or values are weak

references. Thus, when performing garbage collection (also noted

as GC), it might decide to collect keys or values from a weak table,

even if the table is still in scope.

If improperly used, weak tables can easily break the program’s

invariants, as the simple program listed in Figure 1 shows. In this

program, a table t is created containing only one value, another

table referred by a weak reference, and without any other variable

bound directly or indirectly to it. That is, there is no other path

to the value using only strong (i.e., regular) references. Then, such
value can be GC’ed at any time, making true the condition not t [1]
at an arbitrary number of iterations of the loop (the if breaks the
loop when the value in t [1] is nil). Therefore, the returned number

of iterations i cannot be predicted.
Weak tables are used mainly for caching values [8], and a good

use of such tables will ensure the references are valid prior to

accessing them. However, in a realistic programmanually validating

1 local t = {} −−create an empty table
2 setmetatable(t, {__mode = 'v ' }) −−set its values as weak
3 t [1] = {} −−assign an empty table to key 1
4 local i = 0
5while true do
6 i = i + 1
7 ... −−some code, possibly generating garbage
8 if not t [1] then break end
9 end
10

11 return i −−this value cannot be predicted

Figure 1: A non-deterministic program using a weak table.

every use of weak tables is error-prone and, for this reason, it is

proposed in [13] that weak references be only used within the scope

of a library, subject to a larger scrutiny and testing. However, testing

is due to fail given the non-deterministic nature of GC, a problem

exacerbated by specificities of the interpreter and the platform in

which the program is executed.

Therefore, we aim at performing static analysis on code to detect

ill-uses of weak tables. In this paper we present the first steps

towards that direction: a mathematical model of Lua’s GC together

with a prototype tool, LuaSafe, whose aim is to discover potential

sources of non-determinism (at the moment, focusing only in GC).

Our model builds on top of that from [22], and as such, it can be

applied to the study of real Lua programs, missing only a handful

of features from the language unrelated to GC.

The model is mechanized in PLT Redex [11] as an extension

of the mechanization presented in [22]. It covers weak tables and

finalizers, the latter being functions executed when an element

is about to be disposed. Without these interfaces, we show, GC is

deterministic. But as soon as finalizers or weak tables are considered,

determinism is lost.

After understanding the intricacies of Lua’s GC, we develop

LuaSafe. This tool combines the knowledge about weak tables to-

gether with type inference and data-flow analysis in order to detect

ill-uses of weak tables, that could lead to non-deterministic behavior.

For instance, it rightfully rejects the program from Figure 1.

More concretely, our contributions are:

• Amathematical model of Lua’s GC, including finalizers and weak

tables.

• A theoretical framework under which we can express and prove

standard soundness properties of our model.

• A formalization of said model in PLT Redex.

• A prototype tool, LuaSafe, to help uncover potential misuses of

weak tables.

1
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E ::= [[ ]] | E ( e , . . . ) | v ( El ) | var , ... = El
| local var , ... = El in s end
| setmetatable(El ) | error E | . . .

El ::=v , . . . , E , e , . . .
s ::= e ( e , . . . ) | var , ... = e , ...

| local var , ... = e , ... in s end
| setmetatable(e , . . . ) | error e | . . .

e ::= v | e ( e , . . . ) | { [e] = e , ... }
| function ( x , . . . ) s end | r | . . .

v ::= number | string | tid | cid | . . .

var ::= x | e [e]

Figure 2: Syntax of evaluation contexts, statements,
expressions and values.

The mechanization of the model can be downloaded from [21],

and LuaSafe can be downloaded from [20].

2 Basics of the model
In this section we introduce the necessary background to under-

stand the model of GC that we will develop in the coming sections.

As mentioned in the introduction, we build our model of GC on top

of the semantics of Lua presented in [22], and we refer to the cited

work for details.

2.1 A subset of Lua
Figure 2 shows an extract of the syntax of the model of Lua on

which we are basing our studies. A Lua program is a statement (s),
for instance a function call; multiple-variable assignment; definition

of multiple local variables; the primitive setmetatable (discussed

below); error objects, Lua’s representation of errors; and several

others. As expressions (e) we have values (v); function calls; table

constructors; function definitions; and references (r) to the value

store (to be explained below). Values are numbers, strings, table

identifiers (tid) and closures identifiers (cid) (also introduced below).
To model imperative variables we include a mapping r → v ,

the values storage, denoted with σ . Tables and closures are also

manipulated by reference, although to ease the model we create two

different sets of identifiers for them (tid and cid). These identifiers
refer to tables and closures, respectively, through a new mapping,

the objects storage, denoted with θ . We must point out a difference

from the model in [22]: they do not consider references to closures,

which in our model are required to faithfully record the cleaning

of weak tables (§3.3).

Together with the given terms we include the corresponding

evaluation contexts (E): terms with a special position marked by

[[ ]], a hole. They can be used to formalize many context-dependent

concepts, but the ones shown here indicate a call-by-value execution

of programs, with a left-to-right ordering in the arguments of sub-

expressions. We will explain later how they are used to actually

impose a particular order of execution.

The semantics given is operational and is formalized as a relation,

which we will denote with

L
7→, over configurations of the form

σ : θ : s. For instance, the following rule formalizes a function call:

θ (cid) = function (x1, ..., xn) s end
σ ′ = (r1, v1), ..., (rn, vn),σ

σ : θ : cid (v1, ..., vn)
L
7→ σ ′ : θ : s[x1\r1, ..., xn\rn]

A function call essentially involves the allocation of its argu-

ments into the values’ store σ , with fresh references r1, ..., rn, and

the substitution of the formal parameters of the function by these

references, in the function’s body (s[x1\r1, ..., xn\rn]). Note that

the closure is referred by its identifier.

The following rule models the fact that the execution of a state-

ment might happen inside a larger program, modeled with the

context E :
σ : θ : s

L
7→ σ ′ : θ ′ : s’

σ : θ : E[[s]]
L
7→ σ ′ : θ ′ : E[[s’]]

The pattern from in the left of

L
7→ indicates that the program can be

decomposed into an evaluation context E and a statement s. If the
evaluation contexts and the execution rules are well defined, there

should be just one way of decomposing any program into an E and

an s, and s must be an execution-ready statement (for instance, the

one presented above for function calls). The position of the term is

determined by the hole of each evaluation context and, as can be

seen in Figure 2, it is unique.

2.2 Metatables
Lua presents a powerful metaprogramming mechanism that allows

for the modification of the behavior of some operations under un-

expected circumstances, like arithmetic operations applied with

non-numeric arguments; function calls over non-function values;

indexing a table with a nonexistent key; etc. At the heart of this
mechanism lies the concept of metatable, a regular table that main-

tains handlers to manage unexpected situations, associated with

specific keys defined beforehand. For instance, in order to explain
how a given table should be represented as a string, through the

service tostring, the developer can associate a conversion func-

tion with the key “__tostring” in the table’s metatable. Some type

of objects (tables and userdata) allows for the definition of a sin-

gle metatable per value, while for the remaining there is just one

metatable per type.

A table can be set a metatable through the setmetatable library
service. In [22], tables are modeled as a pair containing the table’s

data and a table identity for the metatable, which can be nil. As an
example, the following rule specifies the creation of a table:

tid < dom(θ1) θ2 = (tid, ({[ v1 ] = v2, ...} ,nil)), θ1

σ : θ1 : {[ v1 ] = v2, ...}
L
7→ σ : θ2 : tid

After creation, a table does not contain a metatable set. Only trough

setmetatable one can associate a metatable to the given table.

As we will see in the coming section, metatables play an impor-

tant role in the semantics of GC.

3 Garbage collection
This section represents our main contribution: an abstract model of

Lua’s GC, modularly divided in three parts. We start by modeling

GC without interfaces (§3.1), laying the basic concepts upon which

the interfaces are added: finalizers (§3.2), and weak tables (§3.3).

3.1 Reachability-based garbage collection.
Lua implements two reachability-based GC strategies: a mark-and-
sweep collector (the default) and a generational collector. The user is

2
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entitled to change the algorithm by calling the collectgarbage stan-

dard library’s service. In this section we will provide a specification

for the behavior of a typical reachability-based GC. It should en-

compass the essential details of the behavior of the two algorithms

included in Lua and any other based on reachability. We start with

a small set of definitions that we will enrich in coming sections.

Reachability. The purpose of GC is to remove from memory

(the store) information that will not be used by the remaining

computations of the program. One of the simplest and commonly

used approaches to find such information is based on the notion of

reachability [e.g., 12]. The idea is simple: given the set of references

that literally occur in the program (the root set), it must be the case

that any information (e.g., value in a store) that may be used by the

program must be reachable from that set. Conversely, any binding
(a reference with its value) in the store that cannot be reached from

the root set, will not be accessible from the program and, therefore,

can be safely removed as it will not be needed in the remaining

computations of the program.

In the context of this work, those values which are not reachable

will be called garbage. This notion, sufficient to model Lua’s GC, is

purely syntactic: it will take into account just the literal occurrence

of references in the program, or their reachability from this set

of references that occur literally, to determine if a given value

is garbage or not. In contrast, there are approaches, to identify

garbage, where also the semantics of the program may be taken

into account [e.g., 15].
To formally capture the notion of garbage, it will be easier to be-

gin with the definition of reachable references. The only difference

worth to mention, in comparison with common definitions found

in the literature [12, 16], is the inclusion of metatables: a metatable

of a reachable table is considered reachable, so a reachability path,
that is, a path between a reference and the root set, might also go

through a metatable.

Informally, a location (value reference or an identifier) will be

reachable with respect to a given term t , and corresponding stores,

if one of the following conditions hold:

• The location occurs literally in t .
• The location is reachable from the information associated with

a reachable location. This includes:

– The location is reachable from the closure associated with a

reachable location.

– The location is reachable from the table associated with a

reachable location.

– The location is reachable from a metatable of a reachable table

identifier.

This is formalized in the following definition:

Definition 3.1 (Reachability for Simple GC). We say that a location

l ∈ r ∪ tid ∪ cid is reachable in term t , given stores σ and θ , iff:

reach(l, t,σ ,θ ) = l ∈ t ∨
(∃r ∈ t, reach(l,σ (r),σ \ r,θ )) ∨
∃ tid ∈ t, (reach(l,π1(θ (tid)),σ ,θ \ tid) ∨

reach(l,π2(θ (tid)),σ ,θ \ tid)) ∨
∃ cid ∈ t, reach(l,θ (cid),σ ,θ \ cid)

We write l ∈ t to indicate that l occurs literally in term t , and
write γ \ l as the store obtained by removing the binding of l in γ .

Informally, this predicate states that either l occurs in t , or there is
a reference in t such that l is reachable from it.

To avoid cycles generated from mutually recursive definitions,

in the stores, that would render undefined the preceding predicate,

we remove from the stores the bindings already considered. We

assume the predicate is false if a given location occurs in t but does
not belong to the domain of any of the stores.

Note that for a table tid we not only check its content (π1(θ (tid)))
but also its metatable (π2(θ (tid))). That is, a table’s metatable is

considered reachable when the table itself is reachable. Observe

that, being metatables ordinary tables, they can contain other

tables’ ids or even closures, which in turn may have other lo-

cations embedded into them. Naturally, if metatables were not

taken into account for reachability, we could run straight into the

problem of dangling references any time a metamethod is recov-

ered from the metatable. Also, note that during the recursive call

reach(l,π2(θ (tid)),σ ,θ \ tid), at first it will determine if l is exactly
π2(θ (tid)) (because it asks for l ∈ π2(θ (tid)), for π2(θ (tid)) being
either nil or a table identifier) and, if not, it will continue with the

inspection of the content of the metatable, by dereferencing its id,

given that it is not nil. Hence, we do not remove π2(θ (tid)) from θ
in the mentioned recursive call.

The last disjunct checks for reachability following a closure

identifier cid present in the root set of references.We need to expand

the reachability tree following the environment of the closure (i.e.,
the mapping between the external variable’s identifiers, present in

the body of the closure, and their corresponding references).

We conclude this part on reachability with a minor observation:

naturally, the reference manual leaves unspecified details of GC.

For instance, it does not mention how metatables affect GC even

though it does have an observable effect on programs. One of our

major challenges and aim in this work is to unveil such interactions.

Specification of a garbage collection cycle. We keep abstract the

specification of a cycle of GC in order to accommodate to any

implementation of GC:

Definition 3.2 (Simple GC cycle).
gc(s,σ ,θ ) = (σ1,θ1), where:

- σ = σ1 ⊎ σ2
- θ = θ1 ⊎ θ2
- ∀l ∈ dom(σ2) ∪ dom(θ2),¬reach(l, s,σ ,θ )

We useγ1⊎γ2 to denote the union of stores with disjoint domains.

This specification states that gc(s,σ ,θ ) returns two stores, σ1 and

θ1, which are a subsets of the stores provided as arguments, σ and

θ . We do not specify how these subsets are determined. We just

require that the remaining part of the stores (σ2 and θ2) do not

contain references that are reachable from the program s. Satisfied
this condition, it is safe to run code s in the new stores σ1 and θ1,

as no dereferencing of a dangling pointer may occur.

Observe that the previous specification does not imposeσ1 andθ1
to be maximal, meaning they might have non-reachable references

with respect to s.
Using the previous specification of GC, we can extend our model

of Lua with a non-deterministic step of GC, through a relation

GC
7→:

(σ ′,θ ′) = gc(s,σ ,θ ) σ ′ , σ ∨ θ ′ , θ

σ : θ : s
GC
7→ σ ′

: θ ′ : s
3
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1 local a, b = {}, {}
2 setmetatable(a, b)
3 b.__gc = function () print( "bye") end
4 a = nil
5 collectgarbage() −−nothing is printed
6 local c = {}
7 setmetatable(c, b)
8 b.__gc = function () print( "goodbye") end
9 c = nil
10 collectgarbage() −−now it outputs 'goodbye'
11 b.__gc = "not␣a␣ function "
12 local d = {}
13 setmetatable(d, b)
14 d = nil
15 collectgarbage() −−nothing happens

Figure 3: Setting up a finalizer.

We require it to actually perform some change to the stores to

ensure progress. This obviously introduces non-determinism: at

any time, as long as there is some garbage left, we can choose to

collect the garbage or to continue with the execution of the program.

But, for the definition provided so far, this non-determinism should

not change the behavior of the program: every execution path

will eventually lead to the same result. We will define formally

this concepts in §4. This property will not longer be true when

extending GC with finalizers and weak tables.

3.2 Finalizers.
Lua implements finalizers, a mechanism commonly present in pro-

gramming languages with GC, useful for helping in the proper

disposal of external resources used by the program. They are de-

fined by the programmer as a function, which is called by the

garbage collector after a value amenable for finalization (table or

userdata) becomes garbage. It should be noted that because final-

izers are called by the garbage collector, there is no possibility of

determining the precise moment in which finalization will occur.

This in contrast with destructors, a concept present in languages

with deterministic memory management algorithms (e.g., as in
C++).

There are several problems that arise from the misuse of this

mechanism, associated with the fact that finalizers are called in a

non-deterministic fashion, introducing that non-determinism into

the execution of the program. Nonetheless, the implementation

of finalizers in Lua provides some guarantees about the execution

order of finalizers and the treatment given to resurrected objects

which makes the algorithm an interesting case study.

3.2.1 Overview of finalizers in Lua. We will begin with an informal

presentation of the semantics of finalizers in Lua. After this, we

will show how to extend the previous model of GC to include this

interface with the garbage collector.

Setting up a finalizer. The finalizer of an object (table or userdata)
is a function stored in the object’s metatable, associated with the key

“__gc”. For finalization to occur (i.e., the execution of the finalizer)

the key must be defined the first time the corresponding metatable

is set. In that case, it is said that the given object is marked for

1 local a, b = {}, {}
2 local c = {__gc = function (o) print( "bye" , o) end}
3 print(a , b) −−table: 0 x56..00 table : 0 x56..40
4 setmetatable(a, c)
5 setmetatable(b, c)
6 a, b = nil , nil
7 collectgarbage()
8 −−bye table: 0 x56..40 (b) bye table : 0 x56..00 (a)

Figure 4: Chronological order of execution of finalizers.

finalization. Later definitions of the __gc field will not be considered.
The code shown in Figure 3 shows this behavior: when a is set an

emptymetatable (b in Line 2), even if later on __gc is defined (Line 3),
when a is garbage collected (Line 5), no output is produced. But

now that b has the __gc field defined, when it is set as a metatable of

a new object (Line 7), this object is correctly marked for finalization

(Line 10). Also, if the value set in the field __gc is not a function,

GC will simply silently ignore the error (lines 11 to 15). As a last

remark, the last finalizer set, assuming it is a function, is the one

called when the object is disposed.

Execution order of finalizers The execution order of finalizers is

chronologically inverse to the time of the definition of the finalizers.

This behavior is explained in Figure 4. This code performs the

following steps: 1) creates two tables, a and b; 2) sets a metatable c
to these objects containing a finalizer that prints the object being

finalized, first for a and then for b; 3) eliminates any reference to a
and b; and 4) invokes the garbage collector. As you can see from

the output (Line 8), the order in which the metatable is set affects

the order in which the finalizers are called. While not shown in the

code, if we swap lines 4 and 5, the result will also be swapped.

Resurrection. During finalization of a given object, its location

is passed to the finalizer, turning the object reachable again. This

phenomenon is commonly known as resurrection, and is normally

transient. Then, there exist the possibility that the user code of

the finalizer makes permanent the resurrection, by creating an

external reference to the object, turning it reachable again even

after finalization, preventing it from being collected.

This possibility introduces problems [7] into the implementation

of garbage collectors, reduces their effectiveness to reclaim memory

unused by the program and could reintroduce into the program

objects that do not satisfy representation invariants.

To mitigate this issue, Lua treats finalized objects specially: it

does not allow for a finalized object to be marked again for finaliza-

tion. In that way, the finalizer of an object will never be called twice,

avoiding indestructible objects. The object will be destroyed once it

becomes unreachable again. This is the only difference of a finalized

object: it is still possible to set a new metatable and to configure the

resurrected objects’ behavior using every metamethod but “__gc”.

Error handling. During execution of a program, any error in a

finalizer is propagated to the main thread of execution. Because

finalizers are interleaved with user code, any error thrown from

a finalizer appears in a position in the program that cannot be

determined in advance. If that position happens to be inside a

function that was called in protected mode —like a try in other

languages— then the error is caught.

4
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∀ 1 ≤ i, field i = v ∨ field i = [ v ] = v ′

θ2 = ( tid, ( addkeys({field1, ...}) , nil, ⊥ )), θ1

θ1 : {field1, ...}
F
7→ θ2 : tid

δ (type, v) ∈ {“table”, “nil”}
indexmetatable(tid, “__metatable”,θ1) = nil

θ2 = θ1[tid := (π1(θ1(tid)), v , set_fin(tid, v,θ1) )]

θ1 : setmetatable(tid, v)
F
7→ θ2 : tid

Figure 5: Selected rules extended with finalization.

When a program ends normally, Lua executes each finalizer of

the remaining objects in protected mode. In that circumstance, any

error occurred during the execution of a given finalizer, interrupts

only that finalizer, allowing for the call of the remaining finalizers.

Also, a finalizer ended by an erroneous situation does not prevent

the corresponding object from being disposed.

3.2.2 Modeling finalizers. We extend the model to include final-

izers in two steps: first we update the internal representation for

tables presented in §2 to add information about finalizers; then,

we modify the GC model introduced in 3.1, to be aware of the

finalization mechanism.

Representation of tables. We extend the tuple for representing a

table with a third field, obtaining (table, metatable, pos). The new
field pos has three different possible values: if it is ⊥, it means that

there is no finalizer set for the table; if it is ⊘, it means that the table

cannot be set for finalization (to avoid multiple resurrections); and

if it is a value p, of a set of values P ordered by a given order <fin, it

means the finalizer is set, with priority p, according to <fin. Initially,
pos will be ⊥, as shown in the first rule of Figure 5. We present its

semantics (and the remaining computation rules for finalization),

with a new relation,

F
7→.

As mentioned, <fin is defined chronologically by the moment in

which an object has been marked for finalization. For our semantics,

it suffices to have a function next with signature P → P, which

should provide an element of P larger than its argument. We will

also need ⊥ ∈ P, and to be minimum with respect to <fin. When

a metatable is set with the corresponding call to setmetatable
(second rule of Figure 5), we use a helper function set_fin to compute

the corresponding value of pos.
Figure 6 shows the set_fin function, which takes two tables (a

table identifier tid and the proposed metatable) and a store θ . The
metatable is another table identifier tidm or nil, and returns the

new pos value. The first equation shows the main use of the ⊘: no

matter what is the value of the metatable, if the previous pos field of
the table contains an ⊘, then it returns ⊘ to ensure no finalization

can happen again on tid . The second equation specifies one of the

situations when a given table is unmarked for finalization: if the

metatable is nil, and the previous value of pos is not ⊘, then it

returns ⊥. The third equation considers the case when the same

metatable is set, in which case the pos field remain unchanged

(we use the bracket to mean that every condition must apply). The

fourth equation considers the case when the metatable does not

contain the “__gc” metamethod: it is unmarked for finalization (⊥).

set_fin(tid, v,θ ) = ⊘, if π3(θ (tid)) = ⊘ (1)

set_fin(tid,nil,θ ) = ⊥, if π3(θ (tid)) , ⊘ (2)

set_fin(tid, tidm,θ ) = π3(θ (tid)), if
{

π2(θ (tid)) = tidm
π3(θ (tid)) , ⊘

(3)

set_fin(tid, tidm,θ ) = ⊥, if


“__gc” < π1(θ (tidm))

π2(θ (tid)) , tidm
π3(θ (tid)) , ⊘

(4)

set_fin(tid, tidm,θ ) = next(p), if


“__gc” ∈ π1(θ (tidm))

π2(θ (tid)) , tidm
π3(θ (tid)) , ⊘

(5)

where p = max<
fin
(filter(map(π3, img(θ )), λ pos.pos , ⊘))

Figure 6: Function set_fin for computing the pos field.

gcfin(s,σ ,θ ) = (σ1,θ
′
1, t),where

gc


σ = σ1 ⊎ σ2
θ = θ1 ⊎ θ2
∀l ∈ dom(σ2) ∪ dom(θ2),¬reach(l, s,σ ,θ )

fin



∀tid ∈ dom(θ2),

¬marked(tid,θ2)

∀l ∈ dom(σ2) ∪ dom(θ2),

not_reach_fin(l,σ1,θ1)

[∃tid ∈ dom(θ1),

fin(tid, s,σ ,θ )
next_fin(tid, s,σ ,θ )
v = indexmetatable(tid, “__gc”,θ1)

v ∈ cid ⇒ t = v(tid)
v < cid ⇒ t = nil
θ ′1 = θ1[tid := (π1(θ1(tid)),π2(θ1(tid)), ⊘)]

or:

t = nil
θ ′
1
= θ1]

Figure 7: GC cycle with finalization.

marked(tid,θ ) � π3(θ (tid)) < {⊥, ⊘}

not_reach_fin(l,σ ,θ ) � ∄ tid ∈ dom(θ ), l , tid ∧

marked(tid,θ ) ∧ reach(l, tid,σ ,θ )
fin(tid, s,σ ,θ ) � ¬reach(tid, s,σ ,θ ) ∧ marked(tid,θ )

next_fin(tid, s,σ ,θ ) � ∀tid’ ∈ dom(θ ),

fin(tid’, s,σ ,θ ) ⇒ π3(θ (tid’)) ≤fin π3(θ (tid))

Figure 8: Predicates for finalization.

In the last equation set_fin returns the next value of the maximum

of every pos in θ , if the metatable contains the metamethod “__gc”.

Specification of GC with finalization. We enrich the specification

of GC from §3.1 tomake it aware of finalization (figures 7 and 8). The

new predicate, gcfin, returns two stores σ1 and θ
′
1
, and a term t , the

finalizer to be executed if appropriate. The first part of the predicate

(gc) replicates the gc predicate from §3.1, and states that we can split

the stores into two disjoint parts, the ones to be discarded (σ2 and
θ2) and the rest (σ1 and θ1). But now the partitions have additional

conditions (fin): first, every discarded table tid in θ2 must not be

marked for finalization, otherwise we will lose a call to a finalizer.
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(σ ′,θ ′, v(tid)) = gc(σ ,θ , E[[s]])

σ : θ : E[[s]]
F
7→ σ ′

: θ ′ : E[[ v(tid); s]]

(σ ′,θ ′, v(tid)) = gc(σ ,θ , E[[e]])

σ : θ : E[[e]]
F
7→ σ ′

: θ ′ : E[[ function $ () return e end (v(tid))]]

(σ ′,θ ′,nil) = gc(σ ,θ , s) σ ′ , σ ∨ θ ′ , θ

σ : θ : s
F
7→ σ ′

: θ ′ : s

Figure 9: Interleaving the execution
of finalizers with the program.

Second, we ask that every location from the removed stores is not

reachable from the stores that are kept (σ1 and θ1).
The previous conditions ensure that θ2 only contain tables al-

ready finalized or not set for finalization, and avoids potential dan-

gling pointer errors when executing a finalizer. The following con-

ditions characterize the next table to be finalized. If there exists a

tid in θ1 such that it is finalizable and the next in the order ≤fin

(as expressed by the predicates fin and next_fin), and has a proper

finalizer set (a function v in its “__gc” field), then the next state-

ment to be executed is v applied to the table identifier (transiently

resurrecting the table), and the new table store θ ′
1
is the same as

θ1, except that tid is forbidden to be marked again for finalization

(by setting its pos field to ⊘), therefore avoiding more than one

resurrection of the table. Note that tid is still in the returned θ ′
1
, oth-

erwise it could not be made accessible to the finalizer. In our model,

the table is actually collected in another GC cycle, as we cannot

know before hand if it will be resurrected or not by its finalizer.

In case there is no table with a valid finalizer, then t is nil and
θ ′
1
is just θ1.

Interleaving finalization with the user program. From the defi-

nition of gcfin given above, it is clear that a single GC cycle en-

compasses collection of garbage together with at most one call to

a finalizer. The reasons are two-fold: first, the small-step fashion

of our semantics, and the interleaved execution of finalizers with

the user’s program. However, this does not prevent the execution

of more than one finalizer before the execution of the next user

program’s instruction, given the non-determinism of the execution

rules for GC.

What remains to specify is how finalization is actually inter-

leaved with the user program. This is stated by the rules in Figure 9.

We allow for the possibility of interleaving the finalization step

with any statement or expression to be executed. The first case can

be expressed directly, as shown in the first rule. Interleaving it with

an expression, shown in the second rule, requires some more work,

since we cannot express directly the concatenation of expressions.

In that case, we reduce the desired execution order of expressions

to the one defined for function call.

Finally, if no finalizer is chosen (third rule), as before, we ask for

some of the stores returned to be modified in order disallow infinite

sequences of GC steps.

SO(tid,θ ) =



{ki |ki ∈ ({k1, ...} ∩ cte)} if wv?(tid,θ )
∧ ¬wk?(tid,θ )

{v |v ∈ {k1, v1, ...} ∩ cte} if ¬(wv?(tid,θ )
∨ wk?(tid,θ ))

{(ki, v i)|v i ∈ {v1, ...} ∩ cte} if ¬wv?(tid,θ )
∧ wk?(tid,θ )

∅ otherwise
where π1(θ (tid)) = {[k1] = v1, ...}

Figure 10: Strong occurrences of a table.

3.3 Weak tables
A weak table is a table whose keys and/or values are referred by

weak references: references which are not taken into account by the

garbage collector when determining reachability. In Lua, among

the types included into our model, only tables and closures can

be garbage collected from weak tables, the general rule being that

“only objects that have an explicit construction are removed from weak
tables” [§2.5.2 of 3].

In order to specify a table’s weakness, the user adds in the table’s

metatable the key “__mode” with a string value containing the

characters ‘k’ (for keys to be referred by weak references) and/or

‘v’ (for values to be referred by weak references) .

Introducing weak tables into the model. To model weak tables we

do not introduce weak references explicitly. Instead, we modify the

criterion used to determine the reachability of a given reference

to consider its occurrences on weak tables, according to the tables’

weakness. Key to the new definition of GC cycle is a new predicate

reachCte that allows us to consider the reachability of a collectible
table element (cte), which is an element of the set with the same

name formed from the union of table and closures identifiers.

Reachability of a cte. We distinguish two situations with respect

to the reachability of a cte: either there is a path from the root set of

references to the value itself using just strong references (non-weak
references), or every path to the value from the root set contains

at least one weak reference. In the first case the value will not be

garbage collected, and we refer to such value as strongly reachable.
In the second case the value can be GC.

In order to distinguish these cases, we define what are a table’s

strong occurrences (Figure 10): the keys and/or values of a table

(limited to ctes) that are not referred by weak references. If a given

table has weak values then just its keys’ occurrences are considered

strong (predicates wk? and wv?, elided for brevity, allow us to know

the weakness of a given table). The second and fourth cases can be

explained on the same basis. The third case, weak keys and strong

values, has to do with what is known as an ephemeron table, which

is treated in a special way by the garbage collector, in order to

avoid the problems that arise with cycles into a weak table (e.g.,
values referring to their own keys), which could prevent them from

proper GC, or between weak tables with this level of weakness,

which could delay GC (see [8] for an analysis of the problem from

Lua’s perspective). In an ephemeron table, an occurrence of a value

from cte as the value of a table field is considered strong just if

its associated key is still strongly reachable. Because this is not a

property that can be determined locally, by just looking at the table

being inspected, we return each key-value pair.
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eph(id, (k, v), tid, rt,σ ,θ ) = reachCte(id, v,σ ,θ , rt) ∧
[k < cte ∨ reachCte(k, rt,σ , θ | tid |k , rt)]

reachTable(id, tid,σ ,θ , rt) =
[∃ (k, v) ∈ SO(tid,θ ), eph(id, (k, v), tid, rt,σ ,θ )] ∨
[∃ v ∈ SO(tid,θ ), reachCte(id, v,σ ,θ , rt)] ∨
reachCte(id,π2(θ (tid)),σ ,θ , rt)

reachCte(id, t,σ ,θ , rt) = id ∈ t ∨
∃ r ∈ t, reachCte(id,σ (r),σ ,θ , rt) ∨
∃ tid ∈ t, reachTable(id, tid,σ ,θ , rt) ∨
∃ cid ∈ t, reachCte(id,θ (cid),σ ,θ , rt)

Figure 11: Reachability of a collectible element.

Before presenting the predicate reachCte, we introduce the pred-
icate reachTable (shown in Figure 11), which expands the reach-

ability tree for a table tid , when determining reachability for an

identifier id with respect to a term rt , and stores σ and θ . We first

check for reachability following references from a table tid , when
it happens to be an ephemeron, as specified by the predicate eph.
This predicate says that id is reachable from the value of a field

(k, v) of an ephemeron table tid iff it is strongly reachable from v ,
according to reachCte, and the key k cannot be GC, i.e., is not a
member of cte or it is reachable from the root set of references from

rt: i.e., the reachability of the value is affected by the reachability

of its key. In doing so, we must not take into account v to allow the

collection of a field where the only reference to the key comes from

the value. We use the notation θ | tid |k to denote the resulting store

from removing the field with key k from the table tid .
If the table is not an ephemeron, we just need to consider each

strong occurrence of a cte present into the table, as defined by SO.

Finally, for any table found during the expansion of the reachability

tree, we also need to look into its metatable, as it was the case when

defining the predicate reach, in §3.1.

We now turn to the definition of reachCte (also in Figure 11),

which will have almost the same signature as reach, except for
the addition of the term from which the root set of references is

determined for the case of ephemeron tables. As an aside, while it is

possible to give a primitive or well-founded recursive definition, it

would require cumbersome expressions for the recursive calls over

stores of decreasing size. Instead, we followed [16] and defined the

desired predicate as the least fixed point that satisfies the previous

equation.

The predicate is defined assuming that the mere occurrence of a

cte into t implies that such value is strongly reachable. Recursive

cases are defined such that they maintain this property of t . The
second disjunct dereferences references to values found into the

term t . Next we expand the reachability tree by following tables, as

expressed by reachTable. The last disjunct checks into the environ-

ment of the closures found during expansion, as in Definition 3.1.

GC cycle. Note that by enriching the notion of reachability with

weak references, it could be possible for the garbage collector to

remove the binding of a table or closure identifier which is not

strongly reachable but that is still present into a reachable weak

table. This, of course, would generate dangling pointers if the pro-

gram tries to dereference such identifiers through the weak table.

If we forget about finalizers, we avoid such problems by sim-

ply replacing the predicate reach in Definition 3.2 of gc with the

gcfin_weak(s,σ ,θ ) = (σ ′
1,θ

′′′
1 , s’), where (σ

′
1,θ

′
1, s’) = gc′fin(s,σ ,θ ),

and:

wt



∃θ ′′1 , dom(θ ′′1 ) = dom(θ ′1)

∀tid ∈ dom(θ ′′1 ),θ ′′1 (tid) = θ ′1(tid) ∨
[π1(θ

′′
1 (tid)) ⊂ π1(θ

′
1(tid)) ∧∃(k, v) ∈ π1(θ

′
1(tid)), (k, v) < π1(θ

′′
1 (tid))/

reach


wk?(tid,θ ) ∧ k ∈ cte ∧ ¬reachCte(k, s,σ ,θ , s)
∨

wv?(tid,θ ) ∧ v ∈ cte ∧ ¬reachCte(v, s,σ ,θ , s)

fin key
{

wk?(tid,θ ) ⇒ ¬marked(k,θ )

rem
{

π2(θ
′′
1 (tid)) = π2(θ

′
1(tid))

π3(θ
′′
1 (tid)) = π3(θ

′
1(tid)) ]

fin


θ ′′′1 = θ
′′
1 [tid := (π1(θ

′′
1 (tid)),π2(θ

′′
1 (tid)), ⊘)], if s’ = v(tid))

∨

θ ′′′1 = θ
′′
1 , if s’ = nil

Figure 12: GC cycle extended with weak tables.

new predicate reachCte. However, when considering finalizer, spe-

cial care must be taken. We therefore introduce a new predicate

gcfin_weak (Figure 12), which is based on a modified gcfin predicate.

In concrete, the new new predicate gc′fin is a verbatim copy of gcfin
but with the following changes:

(1) We replace reach with reachCte in the fin predicate.

(2) We prevent for finalization to occur on a table that is also

present as a value from a weak table by adding the following

predicate:

not_fin_val(tid,θ ) � ∄tid’ ∈ dom(θ ), k ∈ v/

(wk?(tid’,θ ) ∨ wv?(tid’,θ )) ∧ (k, tid) ∈ π1(θ (tid’))

(3) We remove the fin portion of the predicate to let the new

gcfin_weak predicate take care of marking the table with ⊘.

Essentially, after obtaining a new θ ′1 from gc′fin, the returned

object store θ ′′′1 might have a few discrepancies from that of θ ′1,
since GC may remove fields of tables when their keys or values are

not strongly reachable.

More concretely, θ ′′′1 is the store obtained from updating θ ′′1
after marking with ⊘ the table being finalized, if applicable (fin).
And θ ′′1 is obtained from θ ′1 after noting that they have the same

domain (table ids), and for every table tid , they either have the same

definition or the table in θ ′1 has a field (k, v) that is not present in
θ ′′′1 and:

reach: The field has a not strongly reachable key or value, depend-

ing on the table weakness. Note that we pass s as the last argu-
ment of reachCte, to preserve it as the root set of references from
which any new expansion of the reachability tree must begin.

fin key: In the case of weak keys susceptible for finalization, they

are removed only after they are finalized. This restriction allows

for a finalizer of a weak key to access any information associated

with that key.

rem: The remaining components of the internal representation of

tables are not altered.

Finally, there is no need for the redefinition of the GC step: the

details of GC of weak tables are all abstracted into the gcfin_weak
7
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result(σ : θ : E [[return v1, ..., vn]]) = σ |S : θ |T : return v1, ..., vn

where



E does not contain a return point

S =
⋃

r ∈ dom(σ ),R(r)
r

T =
⋃

id ∈ dom(θ ),R(id)
id

R(i) = reach(i, return v1, ..., vn,σ ,θ )

result(σ : θ : $err v) = σ |S : θ |T : $err v
where S and T are defined as before, but with
R(i) = reach(i, $err v,σ ,θ )

result(σ : θ : ;) = ∅ : ∅ : ;

Figure 13: Result of a program and associated functions.

metafunction, and its interference with the execution of the pro-

gram does not differ from what regular GC does.

4 Properties of GC
In this section we present the formal framework used to study

properties of our specification of GC. We conclude this section

with an important theorem about Correctness of GC, and in the

way we provide the necessary tools required to discuss about non-

deterministic computations; which form the foundation stone of

LuaSafe (§5).

4.1 Result of a program
We start by defining the notion of result of a Lua program. Es-

sentially, it consists of the term from the last configuration of its

convergent computation, together with the information from the

stores needed to give meaning to the term’s free variables. That is,

we strip off from the stores any information irrelevant to the final

computation of the program.

To capture the previous idea we use a function, result (Figure 13),
that given a final configuration of a program it extracts the required

information from the stores to explain the result represented by

said configuration. In order to understand the different cases con-

sidered by the function, we must state a standard corollary of the

progress property for our semantics, which explains the expected

final configurations for

L
7→ (that is, Lua without GC):

Corollary 4.1 (Corollary of progress). For every well formed
configuration σ : θ : s, just one of the following situations hold:
• The execution diverges, denoted σ : θ : s ⇑.
• The execution ends with an error error v, and stores σ ′ and θ ′,
denoted σ : θ : s ⇓ σ ′

: θ ′ : error v.
• The execution ends normally, with stores σ ′ and θ ′, and some
values v, ... are returned:
σ : θ : s ⇓ σ ′

: θ ′ : E [[return v, ...]], where E does not
contain the point to which the return statement must jump.

• The execution ends normally, with stores σ ′ and θ ′, and no value
is returned:
σ : θ : s ⇓ σ ′

: θ ′ : ;
Where it corresponds, the resulting configuration is also well formed.

The condition expressed for the evaluation context E , in the

case of a computation that ends in E [[return v, ...]], implies that

the return statements occurs outside of a function: it is the result

returned by the program, which will be received, for example, in

the host application where the Lua program is embedded.

We omit the notion of well-formedness, as it is standard: it rules

out not just ill-formed programs, but also ill-formed terms that

represent intermediate computations. It express, mainly, restrictions

that cannot be captured by our context-free grammar.

Coming back to the function result, it considers each possible

final configuration, keeping only the bindings from the stores that

are needed to completely describe the result. It uses the function

reach from §3.1. In the case of a return, it strips out the context
E . Though simple, in the context of syntactic GCs such notion of

result is not be sensible to different syntactic GC strategies, or even

to the complete absence of GC.

Computing the result of a program allows us to compare differ-

ent runs from the same program. We assume that there exists an

α-conversion between locations from σ and θ , even when real pro-

gramming languages often provide several library services that may

break α-conversion. For example, in Lua it is possible to convert a

table id to a string using the library service tostring. Naturally, if
we include this service, we would be able to write programs whose

returned values will depend upon obscure details of memory man-

agement, and that will be beyond formal treatment for the purpose

of comparison of results. Thus, we assume that the semantics of

L
7→

is deterministic, which basically boils down to:

Assumption 4.1 (Restrictions to the model).

(1) The memory manager is deterministic, and new references are
always created fresh, i.e., there is no re-use of memory location.

(2) There are no services that exposes external variables, like the time,
the file system, a random number generator, etc.

The first assumption can be lifted off if services that expose the

details of memory management are prohibited (iterators for tables

with non-numeric keys, the tostring service, etc.).

4.2 Observations
The standard sanity check of our specification of GC (without

interfaces to the garbage collector), consists in showing that the

addition of a step of GC does not change the semantics of the

running program. In the context of our dynamic semantics we

capture this idea with a notion of observations over programs.

We parameterize the definition over a relation→ that formalizes

execution steps. For our studies, → will be

L
7→ (i.e., our original

model of Lua’s operational semantics) with or without GC steps.

We will reuse the notation introduced in Corollary 4.1 to speak

about the convergence of computations, but now we will subscript

with→, to indicate that we are computing using only the execution

rules from→. For brevity, we will use C for a variable that ranges

over the set of configurations.

Definition 4.2 (Observations). For a given well-formed configura-

tion C, and execution rules→:

obs(C,→) = {⊥ | C ⇑→} ∪ {result(C’) | C ⇓→ C’}

The previous definition hinges on the fact that a progress prop-

erty holds for→: if result is defined over the last configuration of

a convergent computation, this configuration must be a valid final

configuration. While this is true for →=
L
7→, we have not provided

8
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evidence that this is also the case after the addition of GC and its

interfaces. Later, in §4.4, we will argue that by including

GC
7→ to

L
7→

we are not introducing stuck states.

Observations are useful to describe program equivalence:

Definition 4.3 (Program equivalence).

(C,→) ≡ (C’,→′) ⇔ obs(C,→) = obs(C’,→′)

4.3 Garbage
With the definitions developed so far we can now formalize a notion

of garbage as a binding (a pair reference-value) that can be removed

without changing the meaning of a program:

Definition 4.4 (Garbage). For a given well-formed configuration

σ ⊎ {(r, v)} : θ : s , operational semantics →, the binding (r, v) is
garbage with respect to→, iff:

(σ ⊎ {(r, v)} : θ : s,→) ≡ (σ : θ : s,→)

A binding from θ is defined as garbage in an analogous manner.

The concepts introduced so far will allow us to define and study

a notion of correctness of GC in the absence of its interfaces, but

also could be of use for future studies of properties and applications

of the model for weak tables and finalization.

4.4 Correctness of
GC
7→.

With the previously defined notions we can tackle the study of

several desirable properties of GC. For GC without interfaces we

can perform its standard sanity check, i.e., to prove its soundness
property: the addition of a GC step does not change the semantics

of a program. Informally, it consists in showing that by adding

GC
7→ the observations over a given program are not altered. The

desired statement is captured in the following statement (where

L+GC
7→ =

L
7→ ∪

GC
7→):

Theorem 4.5 (GC correctness). For a given well-formed config-
uration σ : θ : s,

(σ : θ : s,
L
7→) ≡ (σ : θ : s,

L+GC
7→ )

The proof is included in appendix A.

We obtain as corollary that

L+GC
7→ is deterministic:

Corollary 4.6 (Determinism of GC). For a well-formed config-
uration σ : θ : s, |obs(σ : θ : s,

L+GC
7→ )| = 1

Naturally, after the introduction of weak tables or finalizers,

programs may no longer exhibit deterministic behavior, hence the

requirement of a set of observations in order to be able to express

the possible outcomes of a Lua program under 7→, the complete

dynamic semantics:

Theorem 4.7 (Non-deterministic behavior). Form some well-
formed configuration σ : θ : s,

(σ : θ : s,
L+GC
7→ ) . (σ : θ : s, 7→)

Proof. Consider the program presented in §1 (Figure 1). □

As a first attempt in recovering the deterministic behavior of

programs that make use of weak tables, in the next section we

introduce LuaSafe.

5 LuaSafe: ensuring GC-safeness

As the code in Figure 1 shows, a program using weak tables could

exhibit non-deterministic behavior. Nonetheless, given the useful-

ness of weak tables to easily implement several data-structures (e.g.,
caches, weak sets, property tables) [8], it is important to understand

their semantics, and to have tools to prevent common pitfalls in

their use. In the first part of the present paper we aimed at the

former, and now we turn our attention into what constitutes the

first steps into the later.

More concretely, in this section we introduce LuaSafe, a proto-
type static analyzer that aims at the detection of ill-uses of weak

tables, that could lead to non-deterministic behavior. We are mostly

concerned with access to fields of weak tables that are not strongly

reachable. While the general problem is known to be undecid-

able [15], we propose an approximation to the solution by combin-

ing techniques from statics semantics (type inference, type checking

and data-flow analysis) together with weak tables’ semantics.

For a given Lua program p, being 7→ the dynamic semantics

that includes

L
7→ and GC with interfaces, if obs(∅ : ∅ : p, 7→) is a

singleton we say that p is gc-safe, and denote with Psafe the set of
gc-safe programs. In our approach we aim at taking a user program

and trying our best to guess if it belongs to Psafe , without asking
the user for modifications of the program or to use weak tables

according to some particular idioms, as proposed in [15].

As this is the first step taken in implementing LuaSafe, we
assume some restrictions—that we mention where relevant—on

the Lua programs under consideration. We expect in the future to

increase the analysis power of the tool.

Overview Figure 14 shows the design of LuaSafe. As a first step,
we take a user program p, an we infer the type of its local variables

and function definitions. In particular, at this point we recognize if

the evaluation of a given expression involves the access to a field

of a weak table, and to determine the kind of information such

field contains. This is important to understand if the result of such

evaluation could be unpredictable. The result of type inference is

an annotated program ptyped .
The next step consists in the extraction of information useful to

determine if the references in a given expression are reachable from

the root set of references. To compute the root set at some point of

the program, we use a syntactic approximation consisting in the

set of definitions of variables which are valid at that point. That

is, we solve the problem of reachable definitions [1] for ptyped by

constructing its control flow graph (cfg), annotating each expression

and statement of the program with the set of definitions that are

valid at that particular point, obtaining cfgrch_def .
The last step consists in taking ptyped and cfgrch_def , and per-

forming type checking over ptyped . In that way, we are able to recon-
struct the type of complex expressions, and to recognize whether

the evaluation of a given expression involves the access to a field

of a weak table. If it is the case, we will query cfgrch_def for the

set of valid variable definitions at the corresponding point of the

program and determine the reachability of the corresponding table

field, following the semantics of weak tables from §3.3.

In the reminder of this section we explain the different steps of

LuaSafe and present examples showing its potential.
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p type inference ptyped reach. defs. ptyped + cfgrch_def type checking p ∈ Psafe

Figure 14: Design of LuaSafe.

Typed language
s ::= . . . | local x : t , ... = e , ... in s end
e ::= . . . | t function ( x : t , . . . ) s end

Types
t ::= prmt | st | dyn | t → t | { [ st ] : t ... } wkness | µ y . t | t × t | ()
prmt ::= nil | num | bool | str
st ::= ⟨vst : prmt⟩
vst ::= nil | string | boolean | number
wkness ::= strong | wk | wv | wkv

Figure 15: Grammar for typed terms.

5.1 Type system
Common to all the steps of LuaSafe lies the type system. Figure 15

shows the language extended with type annotations for local vari-

ables and function definitions. As for the types, we have primitive

types, prmt , where we include the nil type, numbers, booleans
and strings. Then, we have singleton types st , which lift to the level
of types a literal value vst (nil, a number, a string, or a boolean).

Singleton types serve two purposes in our work: to allow us to stat-

ically know which field of a table is being indexed, and therefore to

know if the access is valid or not; and to track the changes in the

weakness of tables at each call to setmetatable.
Besides primitive and singleton types we have the dyn supertype

for variables whose type cannot be properly inferred statically;

function types, t → t; table types, { [ st ] : t ... } wkness, which
include a tag (wkness) indicating the weakness of the table, and

are restricted to be indexed by singleton types; recursive types,

µy . t , to better support common programming idioms using tables;

and product types, t × t and () (the empty tuple), which we use to

express the domains of functions, though they have many other

roles in typing Lua programs (see, for example, [17]).

Types are ordered by a typical subtyping relation <:, except for

minor simplifications: dyn is the supertype of every type; every

primitive type p is the supertype of any ⟨v : p⟩; subtyping for func-

tion and recursive types will be reduced to reflexivity, for purposes

of simplification of type inference; table types are related by width,

depth and permutation subtyping; and product types are covariant.

As an important remark, we do not take a tables’ weakness into

account for subtyping in order to let the weakness of a table to

change through a given program.

5.2 Type inference
Our type inference algorithm is based mostly on ideas introduced

in [2], where it is presented a type inference algorithm for a lan-

guage that includes some features of JavaScript. For reasons of

brevity we will not cover its details. We refer the reader to the cited

work and our mechanization with PLT Redex.

Informally, the essence of the process consists in traversing the

AST of a given program, generating constraints over the type that

we should assign to each expression. These constraints are gen-

erated observing the way in which expressions are used in the

program. For our purposes constraints relates types of terms, ac-

cording to our subtyping relation, and restricts the fields that a

given table type should have.

The solution proposed in [2], which we follow, works in steps.

First, for each expression, a new type variable is constructed; then,

these variables are constrained. Once a set of constraints Cs is
generated for a given program, the algorithm proceed by inferring

new constraints from Cs, for which it is guaranteed that, if a solu-

tion exist for Cs, then the same solution solves the newly inferred

constraints. This step intends to make evident the existence of a so-

lution or expose any inconsistency present among the constraints,

showing the absence of a solution. The last step generates solutions

for each constraint.

Our type inference algorithm follows the previously described

process, with minor additions to tackle the problem of type infer-

ence given our subtyping relation, which is slightly more complex:

we have the supertype dyn, tuple types and a slightly more complex

subtyping relation for primitive types, since we also have singleton

types. The main additions involve enriching the expressiveness

of the language to express constraints over types, and an added

step that refines the possible types that could be assigned to an

expression, for the case of primitive types.

5.3 Computing the Control Flow Graph
In order to compute the cfg for the program we follow traditional

ideas from [1] adapted to Lua code. The resulting cfgrch_def contains
a family of sets of definitions of variables that are valid at every

statement and expression of the program being typed. We identify

each of such points with a context C, that we need to update ac-

cordingly through the whole type checking process. Such contexts

also serve to identify the exact point in the program where the tool

identified a potentially non-deterministic behavior. cfgrch_def is in-

dexed by these contexts. For brevity we do not show its definition,

but it can be seen in the mechanization accompanying this paper.

5.4 Type checking
For brevity, we focus on the peculiarities of determining gc-safeness.

Type checking is described by the typing relations ⊢te⊆ Γ×cfgrch_def ×
C × e× Γ× t and ⊢ts⊆ Γ× cfgrch_def ×C × s× Γ, (partially) described

in Figure 16 and Figure 17, respectively.

We denote with Γ the environments mapping variable identifiers

with their types. Since we are typing a dynamic language, the

statements and expressions could change this mapping because of

assignments of the same variable to values having different type.

Therefore, the typing relation includes a second environment to

reflect the changes. In the typing rules we ensure that the the values

assigned to a certain variable have types related by subtyping.

The first rule in Figure 16 shows the typing of a (non-weak) table

indexing, e1[e2]. As mentioned, in this prototype we simplify type

checking by assuming that each key is a literal value. Nonetheless,

this is enough to type check common idioms involving tables, in

Lua. Assuming that e2 can be successfully typed as st2, we look
10
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Γ1, cfgrch_def ,C[[ [[ ]][e2] ]] ⊢te e1 : Γ2 : {[st1] : t1, . . .} strong
Γ2, cfgrch_def ,C[[ e1[[[ ]]] ]] ⊢te e2 : Γ3 : st2
⊢mtch {[st1] : t1, . . .} ≈ {. . . ,[st2] : t2, . . .}

Γ1, cfgrch_def ,C ⊢te e1[e2] : Γ3 : t2

Γ1, cfgrch_def ,C[[ [[ ]][e2] ]] ⊢te e1 : Γ2 : {[st1] : t, . . .} wv
Γ2, cfgrch_def ,C[[ e1 [[[ ]]] ]] ⊢te e1 : Γ3 : st2
⊢mtch {[st1] : t, . . .} ≈ {. . . ,[st2] : cte, . . .}

reachCte(cfgrch_def [C], e1[e2], Γ3)

Γ1, cfgrch_def ,C ⊢te e1[e2] : Γ3 : cte

Γ1, cfgrch_def ,C[[ [[ ]][e2] ]] ⊢te e1 : Γ2 : {[st1] : t1, . . .} wv
Γ2, cfgrch_def ,C[[ e1 [[[ ]]] ]] ⊢te e2 : Γ3 : st2

⊢mtch {[st1] : t1, . . .} ≈ {. . . ,[st2] : t2, . . .} t2 < cte

Γ1, cfgrch_def ,C ⊢te e1[e2] : Γ3 : t2

Figure 16: Type checking for table indexing.

into the type of e1 for a field with the same type, ⊢mtch {[st1] :

t1, . . .} ≈ {. . . ,[st2] : t2, . . .}. In that case, we successfully type

the whole indexing expression as t2, carrying in Γ3 the (possible)
modifications to the original environment.

The second rule in Figure 16 shows the typing of the indexing

of a table that has weak values. If we can determine that the value

being indexed belongs to the set of values that can be garbage-

collected (cte), we need to check for the reachability of the value, to
ensure a deterministic behavior of the indexing.We query cfgrch_def
for the set of definitions of variables that reaches the point C of

the program (i.e., the table indexing), and then traverse that set

of definitions to check for the reachability of the exact expression

e1[e2] as expressed by the predicate reachCte from §3.3 (properly

adapted to work with the information from our static analysis).

The last rule in Figure 16 shows the case of indexing a table that

has weak values, but when the value being accessed does not belong

to the set cte. In this case there is no risk of non-determinism.

For the present prototype the case of tables with weak keys

(ephemerons) is trivially solved, since for any table, all of its keys

will not belong to the set cte of values that could be garbage col-

lected. If we allow also ctes as keys, checking for determinismwould

proceed analogous to the case of weak values, though with the ex-

pected modifications dictated by the semantics of ephemerons.

Another requirement for our typing relations is for them to

recognize and keep track of changes in the weakness of a given

table, as a result of calls to the service setmetatable. Figure 17

shows the typing rules for calls to this service. In the first rule we

show the case when the givenmetatable contains the corresponding

field to inform about a change in the weakness of the table. We

therefore require the metatable to have a field with key of singleton

type ⟨“__mode” : str⟩ and value of singleton type ⟨s : str⟩, with s
containing the character ‘v’. The environment Γ3 will contain the

updated weakness of table x . The last rule shows the case of a call
to setmetatable with a metatable which does not contain proper

information about changes in weakness of the table: it will result in

the table’s weakness being set to strong, regardless of the original
weakness of the table.

5.5 Examples

In this section we show the capabilities of code analysis of the

present version of LuaSafe with examples that, though artificial

in concept, are meant to pinpoint the possibilities of the proposed

approach. As mentioned in the introduction, the program from

Figure 1 is correctly flagged as non-deterministic.

Additionally, Figure 18 shows the implementation of a cache-

like structure, cache1 in Line 1, as a table with weak values. This

cache stores several closures in fields indexed by different numbers.

Beginning from Line 4, we create weak and strong references to the

closures stored in cache1. In Line 4 we create an object-like table,

obj, where we store a reference to one of the closures from cache1.
In Line 5 we define another cache-like table, cache2, and we add

another reference to a closure stored in cache1. In lines 6–7 we set

cache1 and cache2 to have weak values. What follows are accesses

to the closures in cache1, through indexing. LuaSafe correctly

recognizes that the indexing in Line 8 is safe, since it involves the

access of a cte (a closure), stored in a table with weak values, but

for which there is a strong reference coming from the presence of

the closure as a method from obj. The situation is different for the

last two accesses (lines 8 and 9): it recognizes two different kinds of

ill accesses: in Line 9 the indexing involves a cte value from a weak

table, but for which every reachability path contains at least one

weak reference (besides cache1, it is only referenced from a value

of cache2): i.e., it is not strongly reachable. In Line 10, the value

accessed has no other reference besides the one from cache1.
In Figure 19 we illustrate the possibility of keeping track of the

addition of new fields to tables, by means of assignments. The ex-

ample features a table, t1, which is defined field by field, with every

new field defined in terms of the previous. The tool recognizes that,

in the function call in Line 6, there is a cte being accessed which is

not strongly reachable. Also, type inference and type checking cor-

rectly solve the type of the parameter being passed in the call, which

is not a cte, hence, there is no risk of non-deterministic behavior.

The example also serves to showcase some of the constructions of

the language that LuaSafe handles, which includes every syntactic

form except functions returning multiple values, assignment and

definitions of multiple variables and tables with ctes keys.

6 Future and related work

Futurework could include one of the several venues of improvement

of LuaSafe: an enriched type system, proofs of soundness of type

inference and checking, and the inclusion of language features that

were left out of this first prototype. The main known drawback of

using PLT Redex for this investigations is the poor performance

of the resulting programs. The implementation is useful mainly

for the testing ideas about static analysis, rather than tackling the

analysis of real-world Lua programs. Future work could include

the re-implementation of LuaSafe in a more efficient language.

Another a promising line of work for the future is to adapt

the core concepts to the new ECMAScript, which includes weak

references and finalizers [13].

As for related work, we group them in three: formalizations of

GC, theoretic tools related to the inference of types, and tools for

static analysis of GC.
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Γ1(x) = {[st] : t, . . .} wkness1 Γ1, cfgrch_def ,C[[ setmetatable(x, [[ ]]) ]] ⊢te e : Γ2 : {. . . ,[⟨“__mode” : str⟩] : ⟨s : str⟩, . . .} wkness2
‘v’ ∈ s Γ3 = Γ2[x : {[st] : t, . . .} wv]
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Figure 17: Type checking: setmetatable.

1 local cache1 = {[1] = function() return 1 end,
2 [2] = function() return 2 end,
3 [3] = function() return 3 end}
4 local obj = {method = cache1[1], attr = {}}
5 local cache2 = {[1] = cache1[2]}
6 setmetatable(cache1, { __mode = "v" })
7 setmetatable(cache2, { __mode = "v" })
8 cache1 [1]()
9 cache1 [2]()
10 cache1 [3]()

Figure 18: Example: Implementation of a simple cache.

1 local t1 = {}
2 t1[" attr1 "] = 1
3 t1["method"] = function(x) return x + t1[" attr1 "] end
4 t1[" attr2 "] = ( t1["method"] (t1[" attr1 " ]) )
5 setmetatable(t1, {__mode = "v" })
6 t1["method"](t1[" attr2 " ])

Figure 19: Example: Tracking the addition of table fields.

Formalizations of GC: Leal et. al. present in [16] a formal seman-

tics for a λ-calculus extended with references (strong and weak),

and finalizers. From the literature surveyed, this is the only work

where both interfaces to the GC are considered. The semantics

presented for finalization does not impose an order of execution

among finalizers, and resurrected objects’ semantics does not differ

from live ones. Also, there is no interaction between weak refer-

ences and finalization. As described in §3.2, Lua’s implementation

of finalization imposes a chronological order of finalization, and

resurrected objects’ semantics differs from live ones in certain con-

ditions, even with regard to resurrected objects present in weak

tables. This adds a certain level of interaction between finalization

and weak tables.

Morrisett et. al. present in [18] a reduction semantics for GC

(named λGC ), but without any interface with the garbage collector.

The theory developed for proving correctness for GC served as a

major source of inspiration for our own development. The given

specification for a GC cycle does not consider reachability, but

rather observes for the appearance of free variables when removing

a given binding from the heap. In [12] is shown that specifying GC

in terms of reachability results in an increased expressiveness of

the resulting model, reflected in the possibility of emulating even

more trace-based GC strategies. We followed that path.

Donnelly et. al. extended λGC including weak references [15].

They use their model (named λweak) to tackle the semantics of

the key/values weak references present in the GHC implementa-

tion of Haskell (a concept similar to ephemerons, also present in

Lua). Also, they present a type system for their model and show

how to use it in the collection of reachable garbage (i.e., semantic
garbage). Finally, they tackle the problem of the introduction of

non-determinism into the evaluation of a program that makes use

of weak reference. They provide a decidable syntactic criterion for

recognizing programs well-behaved with regard to GC (i.e., with a

deterministic behavior, regardless of their use of weak reference),

and characterize semantically a larger class of programs with the

same deterministic behavior. Because λweak is directly derived form
λGC it lacks the expressiveness of a model based on reachability.

On the other hand, the theory developed for their model is based

on a set of observations over programs that considers the possi-

bility of a non-deterministic behavior. Being non-determinism a

phenomenon also present in our model, their theory served as a

source of inspiration for the development of ours.

The concept of ephemerons and their implementation in Lua

is described in [8]. However, they are not studied into a formal

setting.

Type inference for Lua: Type inference for Lua has being already

tackled byMascarenhas et. al. in [9] to obtain an optimized compiler

for Lua 5.1. In the same vein, Maidl et. al. present Typed Lua [17],

a type system for Lua 5.2 that tackles several of the complexities

of the language, with special care in the typing of common idioms

used by the community of Lua.

While not strictly related to Lua, Anderson et. al. introduce in [2]

a type inference algorithm for a language similar to JavaScript,

together with the formulation of several properties that characterize

the soundness of the proposed approach.

Static analysis for GC: In [6] the authors consider a form of local

static analysis to detect the type of reference (collectable, weak, and
strong) that occurs in a trace of execution. They use this information

to avoid memory-leaks. In [14] the static analysis performed is used

to determine the correct scope of weak and strong references. Don-

nelly et. al. propose in [15] the recognition of gc-safeness, first, by

providing a restricted set of programs, characterized syntactically,

for which it can be asserted their deterministic behavior, and later,

by a semantic definition of a wider class of programs, though not

recognizable through syntactic analysis. In contrast, our approach

to gc-safeness recognition aims at receiving the user program as it

is, and doing a best-effort attempt in reasoning about the program’s

behavior.

12
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Appendices

A Properties of GC

To reach to a proof of the correctness of

GC
7→ we will require, first,

to check for several lemmas about simple properties that hold for

both,

L
7→ and

GC
7→.

Properties preserved by
L
7→. The first lemma states that once a

binding becomes amenable for collection, it will remain in that

state after any computation step from

L
7→.

1
For its proof we will

assume that the reader is familiar with the model presented in [22].

A complete proof would require case analysis on every computation

step from said model. For reasons of brevity, we will consider just

a few cases.

1
Note that such simple property does not hold anymore if we introduce weak tables

or finalization.

Lemma A.1. For configurations (σ1 : θ1 : s1), (σ2 : θ2 : s2), if
(σ1 : θ1 : s1)

L
7→ (σ2 : θ2 : s2), for (σ1 : θ1 : s1) well-formed, then

∀l ∈ dom(σ1)∪dom(θ1), ¬reach(l, s1,σ1,θ1) ⇒ ¬reach(l, s2,σ2,θ2).

Proof. We will follow the modular structure of

L
7→ to reason

over the step that transforms (σ1 : θ1 : s1) into (σ2 : θ2 : s2). We

have the following cases for the step taken from

L
7→:

- The computation does not depend on the content of the stores ( i.e.,
it does not change bindings from a store or dereferences locations):
then, it can be seen, by case analysis on each computation rule,

that such computation step does not introduce any reference

into the instruction term. What could happen is that the root set

is reduced, by deleting references present into s1. In any case,

for a given l ∈ dom(σ1) ∪ dom(θ1), if ¬reach(l, s1,σ1,θ1) it must

be the case that also ¬reach(l, s2,σ2,θ2).
- The computation changes or dereferences locations from σ1 : for a
given l ∈ dom(σ1)∪dom(θ1), such that ¬reach(l, s1,σ1,θ1) let us
assume that reach(l, s2,σ2,θ2). To reason about the statement,

we would need to do case analysis on every possible computation

step that interacts with the values store. As an example, let us

consider the implicit dereferencing of references to σ1.
2
Then it

must be the case that s1 matches against the pattern E[[ r ]], for
an evaluation context E and a reference r , and the computation

is:

σ1 : θ1 :
s1
=

E[[ r ]]
L
7→ σ1 : θ1 :

s2
=

E[[σ1(r)]]

where both stores remain unmodified after the computation.

Then, the root set just changed by replacing r by the references

in σ1(r). If ¬reach(l, s1,σ1,θ1) but
reach(l, s2,σ2,θ2), this would mean that l is reachable from the

references in σ1(r). But in s1, the references from σ1(r)were also
reachable, making l reachable in s1, contradicting our hypothesis.
Then, it must be the case that if

¬reach(l, s1,σ1,θ1), l remains unreachable in (σ2 : θ2 : s2).
- The computation changes or dereferences locations from θ1: let us
assume that for a given l ∈ dom(σ1) ∪ dom(θ1),
¬reach(l, s1,σ1,θ1) ∧ reach(l, s2,σ2,θ2). Again we will just

analyze one case, among every computation that interacts with

the store θ1. We will consider the rule that describes how tables

are allocated in θ1. Then, it must be the case that s1 matches

against the pattern E[[ t ]], for an evaluation context E and a table

constructor t , where every field haven been evaluated, making

the table ready for allocation. Then, the (simplified) computation

is:

tid < dom(θ1) θ2 = (tid, (t, nil, ⊥)), θ1

(σ1 : θ1 : E[[ t ]])
L
7→ (σ1 : θ2 : E[[ tid ]])

where the values store remains unchanged, i.e., σ2 = σ1. Then,
the root set just changed by replacing the references in t by the

fresh table identifier tid . If¬reach(l, s1,σ1,θ1) but reach(l, s2,σ2,θ2),
this would mean that l = tid , which cannot be the case as

l ∈ dom(σ1) ∪ dom(θ1) and
tid < dom(σ1) ∪ dom(θ1). Then it must be the case that if

¬reach(l, s1,σ1,θ1), l remains unreachable in (σ2 : θ2 : s2).

2
In [22], for purposes of simplification of the desugared Lua code from test suites, we

included implicit dereferencing of references to values, as done in [19].
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□

The following definition and lemma capture a standard concept

in operational semantics for imperative languages: for a given in-

struction term, the outcome of its execution under given stores will

depend on the content of the reachable portion of said stores.

Definition A.2. For well-formed configurations (σ1 : θ1 : s) and
(σ2 : θ2 : s), we will say that both configurations coincide in the
reachable portion of their stores, denoted

(σ1 : θ1 : s)
rch
∼ (σ2 : θ2 : s)

if and only if ∀l ∈ dom(σ1) ∪ dom(θ1)/reach(l, s,σ1,θ1), then:

- reach(l, s,σ2,θ2)
- l ∈ dom(σ1) ⇒ σ1(l) = σ2(l)
- l ∈ dom(θ1) ⇒ θ1(l) = θ2(l)

and the same holds ∀l ∈ dom(σ2) ∪ dom(θ2).

In the previous definition, we are assuming that, if needed, it

is always possible to provide a renaming of locations from both

configurations to make them equivalent in the sense expressed by

rch
∼ . Finally, it is easy to show that

rch
∼ is an equivalence relation.

The important property, satisfied by configurations that coincide

in the reachable portion of their stores, is stated in the following

lemmas:

Lemma A.3. For well-formed configurations (σ1 : θ1 : s1) and
(σ2 : θ2 : s1), such that:

(σ1 : θ1 : s1)
rch
∼ (σ2 : θ2 : s1)

if ∃(σ3 : θ3 : s2)/(σ1 : θ1 : s1) L
7→ (σ3 : θ3 : s2), then

∃(σ4 : θ4 : s2)/(σ2 : θ2 : s1) L
7→ (σ4 : θ4 : s2) and:

(σ3 : θ3 : s2)
rch
∼ (σ4 : θ4 : s2)

Proof. We will follow the modular structure of

L
7→ to reason

over the step that transforms (σ2 : θ2 : s1) into (σ4 : θ4 : s2):

- The computation does not change bindings from a store or derefer-
ences locations : then it must be the case that every information

from the stores is already put into the instruction term s1 so as

to make the computation from

L
7→ viable, without regard to the

content of the stores. Also, after the computation the stores are

not modified. It implies that:

(σ1 : θ1 : s1)
L
7→ (

σ
1
=
σ3 :

θ
1
=

θ3 : s2) ∧ (σ2 : θ2 : s1)
L
7→ (

σ
2
=
σ4 :

θ
2
=

θ4 : s2)

The root set of references in both configurations,

(σ3 : θ3 : s2) and (σ4 : θ4 : s2), is the same. And, since (σ1 : θ1 :

s1)
rch
∼ (σ2 : θ2 : s1) and the stores are not modified after the step

from

L
7→, it follows that the reachable portion of the stores, from

the root set defined by s2, must coincide, according to
rch
∼ , in the

configurations obtained after

L
7→. Hence:

(σ3 : θ3 : s2)
rch
∼ (σ4 : θ4 : s2)

- The computation changes or dereferences locations from σ1: we
would need to do case analysis on each computation that in-

teracts with the value store. As an example, let us consider the

implicit dereferencing of references to the values store. The hy-

pothesis can be rewritten as:

(σ1 : θ1 : s1)
L
7→ (

σ
1
=
σ3 :

θ
1
=

θ3 : s2)

where s2 contains the value associated with the reference deref-

erenced by

L
7→. Because:

(σ1 : θ1 : s1)
rch
∼ (σ2 : θ2 : s1)

the dereferencing operation will return the same result, if exe-

cuted over σ2. Then:

(σ2 : θ2 : s1)
L
7→ (

σ
2

=
σ4 :

θ
2

=
θ4 : s2)

Finally, because the stores are unmodified, after the step from

L
7→, and since the reachable portions of the stores in the original

configurations coincide, according to
rch
∼ , then, it must be the

case that the reachable portions of the stores obtained after

L
7→

must also coincide, if we consider the same root of references.

Hence:

(σ3 : θ3 : s2)
rch
∼ (σ4 : θ4 : s2)

- The computation changes or dereferences locations from θ1: we
would need to do case analysis on each computation that inter-

acts with θ1. As an example, let us consider table allocation. The

hypothesis can be rewritten as:

(σ1 : θ1 : E[[t]])
L
7→ (

σ3
=
σ1 :

θ3
=

θ1 ⊎ {(tid, t, nil, ⊥)} : E[[tid]])

Then we can assume that:

(σ2 : θ2 : E[[t]])
L
7→ (

σ4
=
σ2 :

θ4
=

θ2 ⊎ {(tid, t, nil, ⊥)} : E[[tid]])

where, if needed, we could apply a consistent renaming of tables’

id in (σ2 : θ2 : E[[t]]), such that it preserves its equivalence with

(σ1 : θ1 : E[[t]]) and tid is available as a fresh table identifier.

Then, it follows immediately that:

(σ3 : θ3 : E[[tid]])
rch
∼ (σ4 : θ4 : E[[tid]])

□

Finally, the following lemma express an intuitive property that

holds among final configurations that happen to be equivalent,

according to
rch
∼ :

Lemma A.4. For final configurations (σ1 : θ1 : s) and (σ2 : θ2 : s),

such that (σ1 : θ1 : s)
rch
∼ (σ2 : θ2 : s), then:

result(σ1 : θ1 : s) = result(σ2 : θ2 : s)

Proof. The result will follow directly from the definition of

result, in Figure 13, and
rch
∼ . We will do a case analysis on the

structure of s, for the configuration (σ1 : θ1 : s), considering that it

is the final state of a convergent computation:

• s = returnv1, ..., vn : for simplicity we consider the case n = 1,

and we omit a possible context E where the return statement

could occur, since it is not taken into account by the notion of

result of a program, as defined by result. For larger values of n
the reasoning remains the same:

– v1 ∈ number ∪ string: then, neither result(σ1 : θ1 : s) nor
result(σ2 : θ2 : s) depend on the content of the stores. Hence,

result(σ1 : θ1 : s) = result(σ2 : θ2 : s).
14
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– v1 ∈ tid ∪ cid : let us consider that v1 = tid for some tid ∈

dom(θ1) (the reasoning for the case v1 ∈ cid is similar). Then,

by definition of result:
result(σ1 : θ1 : return tid) = σ1 |S : θ1 |T : return tid

where


S =

⋃
r ∈ dom(σ1), reach(r,return tid,σ1,θ1)

r

T =
⋃

id ∈ dom(θ1), reach(id,return tid,σ1,θ1)

id

Then, clearly result(σ1 : θ1 : return tid) is depending on the

reachable portions of σ1 and θ1, beginning with the root set

defined by tid . Because

(σ1 : θ1 : tid)
rch
∼ (σ2 : θ2 : tid)

the reachable portions of both configurations coincide. Hence,

result(σ1 : θ1 : s) = result(σ2 : θ2 : s).
– s = error v : this case is identical to the previous one.

– s = ;: then, result(σ1 : θ1 : s) is not depending on the content

of the stores, and so is the case for

result(σ2 : θ2 : s). Hence,
result(σ1 : θ1 : s) = result(σ2 : θ2 : s)

□

Properties preserved by
GC
7→. A simple property to ask for is that

reachable bindings are preserved, in the sense that they are still

reachable and the value to which a given location is mapped is not

changed after

GC
7→. We express this property with the following two

lemmas:

Lemma A.5. For a well-formed configuration (σ1 : θ1 : s), if
(σ1 : θ1 : s)

GC
7→ (σ2 : θ2 : s), for some configuration (σ2 : θ2 : s), then

∀r ∈ dom(σ1), reach(r, s,σ1,θ1) ⇒ σ1(r) = σ2(r). The analogous
holds for any id ∈ dom(θ1).

Proof. Let r ∈ dom(σ1), reach(r, s,σ1,θ1). Then, byDefinition 3.2

and

GC
7→, it must be the case that gc(s,σ1,θ1) = (σ2,θ2) and σ1(r ) =

σ2(r ).
For elements from dom(θ1) the reasoning is analogous to the

previous case. □

Lemma A.6. For a well-formed configuration (σ1 : θ1 : s), if
(σ1 : θ1 : s)

GC
7→ (σ2 : θ2 : s), for some configuration (σ2 : θ2 : s), then

∀l ∈ dom(σ1) ∪ dom(θ1), reach(l, s,σ1,θ1) ⇒ reach(l, s,σ2,θ2).

Proof. Wewill prove it by induction on theminimum number of

dereferences of locations from σ1 or θ1 that needs to be performed

to reach to a given location l, for which reach(l, s,σ1,θ1) holds. By
looking at Definition 3.1, one of the following cases should hold:

- l ∈ s: then it follows directly that reach(l, s,σ2,θ2).

- ∃r ∈ dom(σ1), l ∈ σ1(r), which is in a reachability path of mini-

mum distance, from the root set to r : then reach(r, s,σ1,θ1), and
by inductive hypothesis, reach(r, s,σ2,θ2). Also, by lemma A.5,

σ1(r) = σ2(r). Then l ∈ σ2(r) and reach(l, s,σ2,θ2), by definition.
- ∃tid ∈ dom(θ1), l ∈ π1(θ1(tid)), which is in a reachability path

of minimum distance, from the root set to l: then
reach(tid, s,σ1,θ1), and by inductive hypothesis,

reach(tid, s,σ2,θ2). Also, by Lemma A.5, θ1(tid) = θ2(tid). Then
l ∈ π1(θ2(tid)) and reach(l, s,σ2,θ2) by definition.

- ∃cid ∈ dom(θ1), l ∈ θ1(cid), which is in a reachability path of

minimum distance, from the root set to l: the reasoning is analo-

gous to the previous case. It follows directly that reach(l, s,σ2,θ2).
- ∃tid ∈ dom(θ1), l ∈ π2(θ2(tid)), which is in a reachability path

of minimum distance, from the root set to l: the situation is analo-
gous to the previous case. It follows directly that reach(l, s,σ2,θ2).

□

Corollary A.7. For well-formed configurations
(σ1 : θ1 : s) and (σ2 : θ2 : s), if (σ1 : θ1 : s)

GC
7→ (σ2 : θ2 : s), then

(σ1 : θ1 : s)
rch
∼ (σ2 : θ2 : s).

Proof. It is a direct consequence of lemmas A.5, A.6 and the

definition of
rch
∼ . □

While the following lemma directly refers to the notion of well-

formedness of configurations, it is not required to describe in detail

such notion in order to gain confidence about the following state-

ment and its proof, since they are intuitive enough (for details about

well-formedness, we refer the reader to [22]). Also, the lemma will

allow us to extend the mentioned progress property for

L
7→ to the se-

mantics obtained adding

GC
7→. In particular, it will guarantee that the

introduced notion of observations over programs is well-defined

also for

L
7→ ∪

GC
7→, allowing us to state the desired correctness for

GC
7→.

Lemma A.8. For a well-formed configuration (σ1 : θ1 : s), if (σ1 :
θ1 : s)

GC
7→ (σ2 : θ2 : s), for some configuration (σ2 : θ2 : s), then

(σ2 : θ2 : s) is well-formed.

Proof. From the definition of

GC
7→, it follows that the step does

not change the instruction term. Also, by the previous lemmas, it

follows that

GC
7→ does not introduce dangling pointers. They also

state that

GC
7→ does not modify the stores in any other way, besides

removing garbage. Then, it must be the case that also (σ2 : θ2 : s)
is well-formed. □

Lemma A.9. Over a well-formed configuration (σ : θ : s), only a
finite number of

GC
7→ steps can be applied.

Proof. By Definition 3.2 and

GC
7→, if

(σ : θ : s)
GC
7→ (σ ′

: θ ′ : s)

then it must be the case that either σ ′
or θ ′ is a proper subset of

σ or θ , respectively. Then, being the stores partial finite functions,

it is clear that GC can be performed at most a finite number of

steps. □

The following lemma is a useful tool taken from [18]. It codifies

a simple intuition of plain GC: it must be possible to postpone any

GC step, without changing the observations of the program. In its

statement we use the fact that

GC
7→ does not change the instruction

term.

Lemma A.10 (Postponement). For a given well-formed configu-
ration (σ1 : θ1 : s1), if

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ3 : θ3 : s2).
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then ∃(σ4 : θ4 : s2) such that:

(σ1 : θ1 : s1)
L
7→ (σ4 : θ4 : s2)

GC
7→ (σ ′

3
: θ ′

3
: s2)

where (σ3 : θ3 : s2)
rch
∼ (σ ′

3
: θ ′

3
: s2).

Proof. We will follow the modular structure of

L
7→ to reason

over the step that transforms (σ2 : θ2 : s1) into (σ3 : θ3 : s2):

- The computation does not change bindings from a store or derefer-
ences locations: then it must be the case that every information

from the stores is already put into the instruction term s1 so as

to make the computation from

L
7→ viable, without regard to the

content of the stores. Then, the hypothesis can be rewritten as:

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ2 : θ2 : s2)

If we take (σ4 : θ4 : s2) = (σ1 : θ1 : s2), then we can assert that:

(σ1 : θ1 : s1)
L
7→ (σ1 : θ1 : s2) = (σ4 : θ4 : s2)

where we exploited the fact that, for the previous

L
7→ step to

be performed, the actual content of the stores does not affect

the applicability and the outcome of said computation. Then, by

Lemma A.1, if a binding was ready to be collected in (σ1 : θ1 : s1)
it will remain in that state in (σ1 : θ1 : s2). So, by the non-

deterministic nature of

GC
7→, we could ask for it to remove the

same bindings that changed the stores from (σ1 : θ1 : s1) into
the stores from (σ2 : θ2 : s1). Hence, it must be the case that

(σ1 : θ1 : s2)
GC
7→ (σ2 : θ2 : s2) holds. We obtained:

(σ1 : θ1 : s1)
L
7→ (σ1 : θ1 : s2)

GC
7→ (σ2 : θ2 : s2)

Finally, (σ3 : θ3 : s2)
rch
∼ (σ ′

3
: θ ′

3
: s2) because

(σ3 : θ3 : s2) = (σ2 : θ2 : s2) = (σ ′
3
: θ ′

3
: s2)

- The computation changes or dereferences locations from σ1: we
would need to do case analysis on each computation that in-

teracts with the value store. As an example, let us consider the

implicit dereferencing of a reference to σ1. That is, the
L
7→ step

should be:

(σ2 : θ2 :

s
1

=
E[[r ]])

L
7→ (σ2 : θ2 :

s
2

=
E[[σ2(r) ]])

Then, the hypothesis can be rewritten as:

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ2 : θ2 : s2)

If we take (σ4 : θ4 : s3) = (σ1 : θ1 : s2), we can assert that:

(σ1 : θ1 :

s
1

=
E[[r ]])

L
7→ (σ1 : θ1 :

s
2

=
E[[σ2(r) ]])

because r is reachable in (σ1 : θ1 : s1), and the

GC
7→ step from

the hypothesis preserves its binding, in the sense expressed in

Lemma A.5: hence, if it was possible to perform the derefer-

encing in (σ2 : θ2 : s1) (by hypothesis), it must be possible to

perform it in (σ1 : θ1 : s1), obtaining the same result. Finally,

by preservation of bindings ready for collection after a

L
7→ step,

Lemma A.1, and the non-deterministic behaviour of

GC
7→, we could

ask for the GC step to remove exactly the necessary bindings so

that (σ1 : θ1 : s2)
GC
7→ (σ2 : θ2 : s2) holds. We obtained:

(σ1 : θ1 : s1)
L
7→ (σ1 : θ1 : s2)

GC
7→ (σ2 : θ2 : s2)

Finally, (σ3 : θ3 : s2)
rch
∼ (σ ′

3
: θ ′

3
: s2) because

(σ3 : θ3 : s2) = (σ2 : θ2 : s2) = (σ ′
3
: θ ′

3
: s2)

- The computation changes or dereferences locations from θ1: we
would need to do case analysis on each computation that in-

teracts with θ1. As an example, let us consider table allocation.

Then, the hypothesis can be rewritten as:

(σ1 : θ1 : s1)
GC
7→ (σ2 : θ2 : s1)

L
7→ (σ2 : θ2 ⊎ {(tid, t)} :

s
2
=

E[[tid ]])

for an adequate internal representation of a table, t , and table

identifier tid , that, for our purposes, it will be useful if
tid < dom(θ1). If it is not the case, we can continue with our

reasoning over an appropriate α-converted configuration, where
the references in (σ1 : θ1 : s1) are consistently changed so as

to make tid < dom(θ1). It is because of cases like this one that
we cannot assert a stronger postponement statement, as the

one in [18]: we are not talking about convergence towards a

single configuration; we need to think in terms of
rch
∼ -equivalent

configurations.

If we take

(σ4 : θ4 : s3) = (σ1 : θ1 ⊎ {(tid, t)} : s2)

we know that:

(σ1 : θ1 : s1)
L
7→ (σ1 : θ1 ⊎ {(tid, t)} : s2)

where we can ask for the instruction term to be exactly s2 =
E[[tid ]]. By Lemma A.1 we know that every binding which is

ready for collection in (σ1 : θ1 : s1) is in the same state in

(σ1 : θ1 ⊎ {(tid, t)} : s2). Even more, such bindings just belongs

to σ1 or θ1. Then, by the non-deterministic nature of

GC
7→we could

ask for it to remove just the necessary bindings so as to make

true

(σ1 : θ1 ⊎ {(tid, t)} : s2)
GC
7→ (σ2 : θ2 ⊎ {(tid, t)} : s2).

Then, the following holds:

(σ1 : θ1 : s1)
L
7→ ...

GC
7→ (σ2 : θ2 ⊎ {(tid, t)} : s2)

Finally, (σ3 : θ3 : s2)
rch
∼ (σ ′

3
: θ ′

3
: s2) because

(σ3 : θ3 : s2) = (σ2 : θ2 ⊎ {(tid, t)} : s2) = (σ ′
3
: θ ′

3
: s2)

□

Correctness of simple GC The expected statement of GC correct-

ness should mention that, for a given configuration, the obser-

vations under

L
7→ should be the same that those under

L+GC
7→ (i.e.,

L
7→ ∪

GC
7→). However, under

L
7→ and

L+GC
7→ we expect the observations

to be just a singleton: the programs either diverge or reach to a end,

returning some results or an error object. Giving this observation,

we could change the statement of GC correctness to reach to a

property that can be proved with less effort: given a configuration,

under

L
7→ its execution reaches to a end, if and only if its execution

reaches to an end under

L+GC
7→ , and, in both cases, what is returned

(either values or error objects) is the same.

The stated property will imply the preservation of observations,

as defined in Definition 4.3, but it will allow us to focus just on

convergent computations; preservation of divergent computations

will be a consequence of the double implication structure of the

statement:

Theorem A.11 (GC correctness). For a given well-formed con-
figuration σ : θ : s,

(σ : θ : s) ⇓ L
7→

(σ ′
: θ ′ : s′) ⇔ (σ : θ : s) ⇓L+GC

7→
(σ ′′

: θ ′′ : s′′)

16
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and result(σ ′
: θ ′ : s′) = result(σ ′′

: θ ′′ : s′′).

Proof. Let us assume that (σ : θ : s) ⇓ L
7→

(σ ′
: θ ′ : s′). Then

(σ ′
: θ ′ : s′) is a final configuration where result is defined. Because

L
7→ ⊆

L+GC
7→ , it is always possible to emulate the previous trace by not

using

GC
7→ steps. Then, (σ : θ : s) ⇓L+GC

7→
(σ ′

: θ ′ : s′), where it follows

that, in both cases, the computations returns the same, under

L+GC
7→

and

L
7→.

On the other hand, let us assume that

(σ : θ : s) ⇓L+GC
7→

(σ ′
: θ ′ : s′)

Then, it must be the case that there exist a finite trace of computa-

tion steps, as follows:

(σ : θ : s)
L+GC
7→ (σ1 : θ1 : s1)

L+GC
7→ ...

L+GC
7→ (σn : θn : sn )

where (σn : θn : sn ) = (σ ′
: θ ′ : s ′) is a final configuration over

which result is defined.
By applying inductive reasoning over the number of computation

steps and the Postponement Lemma A.10, it can be shown that we

can rewrite the previous trace as follows:

(σ : θ : s)
L
7→ ...

L
7→ (σi′ : θi′ : si′ )

GC
7→ ...

GC
7→ (σn′ : θn′ : si′ )

where every computation that does not involve GC is performed

at the beginning. We obtained a convergent trace consisting only

in

L
7→ steps. That is:

(σ : θ : s) ⇓ L
7→

(σi′ : θi′ : si′)

What remains is to see if the result is also preserved. To that end,

note that the postponement lemma used also tells us that

(σn′ : θn′ : si′)
rch
∼ (σn : θn : sn )

Then, because final configurations which are
rch
∼ represent the

same result, according to Lemma A.4, it follows that

result(σn′ : θn′ : si′) = result(σn : θn : sn )

Finally, because
rch
∼ is closed under

GC
7→ steps, Lemma A.7, it must

be the case that:

(σi′ : θi′ : si′ )
rch
∼ (σn′ : θn′ : si′ )

Hence,

result(σi′ : θi′ : si′) = result(σn′ : θn′ : si′) = result(σn : θn : sn )

□

An immediate corollary of the previous theorem is that, under

L+GC
7→ , the set of observations over programs is a singleton, even

under the non-determinism nature of

GC
7→:

Corollary A.12. For a well-formed configuration σ : θ : s,
|obs(σ : θ : s,

L+GC
7→ )| = 1

Proof. It follows immediately from the previous theorem and

the determinism of programs under

L
7→. □

Now, based on the observations of the beginning of this section,

we can state an equivalent version of correctness for simple GC,

but in terms of the notion of observations previously defined:

Corollary A.13 (GC correctness). For a given well-formed
configuration σ : θ : s,

(σ : θ : s,
L
7→) ≡ (σ : θ : s,

L+GC
7→ )

Proof. It follows directly from the previous corollary, together

with TheoremA.11. Then, if result(σ ′,θ ′, s′) ∈ obs(σ : θ : s,
L
7→), for

(σ : θ : s) ⇓ L
7→

(σ ′
: θ ′ : s′), by theorem A.11, the previous occurs if

and only if (σ : θ : s) ⇓L+GC
7→

(σ ′′
: θ ′′ : s′′), where

result(σ ′,θ ′, s′) = result(σ ′′,θ ′′, s′′)

Hence result(σ ′,θ ′, s′) ∈ obs(σ : θ : s,
L+GC
7→ ), and we can conclude

that obs(σ : θ : s,
L
7→) = obs(σ : θ : s,

L+GC
7→ ). The converse is analo-

gous.

If ⊥ ∈ obs(σ : θ : s,
L
7→), by correctness of GC, it must happen if

and only if ⊥ ∈ obs(σ : θ : s,
L+GC
7→ ), and because of the determinism

of both,

L+GC
7→ and

L
7→, we can conclude that:

obs(σ : θ : s,
L
7→) = obs(σ : θ : s,

L+GC
7→ )

The converse is analogous. □
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